Newest CVEs

IDDescriptionSeverity
CVE-2026-23203In the Linux kernel, the following vulnerability has been resolved: net: cpsw_new: Execute...
high
CVE-2026-23198In the Linux kernel, the following vulnerability has been resolved: KVM: Don't clobber irqfd...
medium
CVE-2026-23191In the Linux kernel, the following vulnerability has been resolved: ALSA: aloop: Fix racy access...
medium
CVE-2026-23182In the Linux kernel, the following vulnerability has been resolved: spi: tegra: Fix a memory...
medium
CVE-2026-23178In the Linux kernel, the following vulnerability has been resolved: HID: i2c-hid: fix potential...
high
CVE-2026-23174In the Linux kernel, the following vulnerability has been resolved: nvme-pci: handle changing...
high
CVE-2026-23167In the Linux kernel, the following vulnerability has been resolved: nfc: nci: Fix race between...
No Score
CVE-2026-23161In the Linux kernel, the following vulnerability has been resolved: mm/shmem, swap: fix race of...
medium
CVE-2025-71222In the Linux kernel, the following vulnerability has been resolved: wifi: wlcore: ensure skb...
high
CVE-2025-71202In the Linux kernel, the following vulnerability has been resolved: iommu/sva: invalidate stale...
medium
CVE-2026-23210In the Linux kernel, the following vulnerability has been resolved: ice: Fix PTP NULL pointer dereference during VSI rebuild Fix race condition where PTP periodic work runs while VSI is being rebuilt, accessing NULL vsi->rx_rings. The sequence was: 1. ice_ptp_prepare_for_reset() cancels PTP work 2. ice_ptp_rebuild() immediately queues PTP work 3. VSI rebuild happens AFTER ice_ptp_rebuild() 4. PTP work runs and accesses NULL vsi->rx_rings Fix: Keep PTP work cancelled during rebuild, only queue it after VSI rebuild completes in ice_rebuild(). Added ice_ptp_queue_work() helper function to encapsulate the logic for queuing PTP work, ensuring it's only queued when PTP is supported and the state is ICE_PTP_READY. Error log: [ 121.392544] ice 0000:60:00.1: PTP reset successful [ 121.392692] BUG: kernel NULL pointer dereference, address: 0000000000000000 [ 121.392712] #PF: supervisor read access in kernel mode [ 121.392720] #PF: error_code(0x0000) - not-present page [ 121.392727] PGD 0 [ 121.392734] Oops: Oops: 0000 [#1] SMP NOPTI [ 121.392746] CPU: 8 UID: 0 PID: 1005 Comm: ice-ptp-0000:60 Tainted: G S 6.19.0-rc6+ #4 PREEMPT(voluntary) [ 121.392761] Tainted: [S]=CPU_OUT_OF_SPEC [ 121.392773] RIP: 0010:ice_ptp_update_cached_phctime+0xbf/0x150 [ice] [ 121.393042] Call Trace: [ 121.393047] <TASK> [ 121.393055] ice_ptp_periodic_work+0x69/0x180 [ice] [ 121.393202] kthread_worker_fn+0xa2/0x260 [ 121.393216] ? __pfx_ice_ptp_periodic_work+0x10/0x10 [ice] [ 121.393359] ? __pfx_kthread_worker_fn+0x10/0x10 [ 121.393371] kthread+0x10d/0x230 [ 121.393382] ? __pfx_kthread+0x10/0x10 [ 121.393393] ret_from_fork+0x273/0x2b0 [ 121.393407] ? __pfx_kthread+0x10/0x10 [ 121.393417] ret_from_fork_asm+0x1a/0x30 [ 121.393432] </TASK>
medium
CVE-2026-23207In the Linux kernel, the following vulnerability has been resolved: spi: tegra210-quad: Protect curr_xfer check in IRQ handler Now that all other accesses to curr_xfer are done under the lock, protect the curr_xfer NULL check in tegra_qspi_isr_thread() with the spinlock. Without this protection, the following race can occur: CPU0 (ISR thread) CPU1 (timeout path) ---------------- ------------------- if (!tqspi->curr_xfer) // sees non-NULL spin_lock() tqspi->curr_xfer = NULL spin_unlock() handle_*_xfer() spin_lock() t = tqspi->curr_xfer // NULL! ... t->len ... // NULL dereference! With this patch, all curr_xfer accesses are now properly synchronized. Although all accesses to curr_xfer are done under the lock, in tegra_qspi_isr_thread() it checks for NULL, releases the lock and reacquires it later in handle_cpu_based_xfer()/handle_dma_based_xfer(). There is a potential for an update in between, which could cause a NULL pointer dereference. To handle this, add a NULL check inside the handlers after acquiring the lock. This ensures that if the timeout path has already cleared curr_xfer, the handler will safely return without dereferencing the NULL pointer.
medium
CVE-2026-23206In the Linux kernel, the following vulnerability has been resolved: dpaa2-switch: prevent ZERO_SIZE_PTR dereference when num_ifs is zero The driver allocates arrays for ports, FDBs, and filter blocks using kcalloc() with ethsw->sw_attr.num_ifs as the element count. When the device reports zero interfaces (either due to hardware configuration or firmware issues), kcalloc(0, ...) returns ZERO_SIZE_PTR (0x10) instead of NULL. Later in dpaa2_switch_probe(), the NAPI initialization unconditionally accesses ethsw->ports[0]->netdev, which attempts to dereference ZERO_SIZE_PTR (address 0x10), resulting in a kernel panic. Add a check to ensure num_ifs is greater than zero after retrieving device attributes. This prevents the zero-sized allocations and subsequent invalid pointer dereference.
medium
CVE-2026-23205In the Linux kernel, the following vulnerability has been resolved: smb/client: fix memory leak in smb2_open_file() Reproducer: 1. server: directories are exported read-only 2. client: mount -t cifs //${server_ip}/export /mnt 3. client: dd if=/dev/zero of=/mnt/file bs=512 count=1000 oflag=direct 4. client: umount /mnt 5. client: sleep 1 6. client: modprobe -r cifs The error message is as follows: ============================================================================= BUG cifs_small_rq (Not tainted): Objects remaining on __kmem_cache_shutdown() ----------------------------------------------------------------------------- Object 0x00000000d47521be @offset=14336 ... WARNING: mm/slub.c:1251 at __kmem_cache_shutdown+0x34e/0x440, CPU#0: modprobe/1577 ... Call Trace: <TASK> kmem_cache_destroy+0x94/0x190 cifs_destroy_request_bufs+0x3e/0x50 [cifs] cleanup_module+0x4e/0x540 [cifs] __se_sys_delete_module+0x278/0x400 __x64_sys_delete_module+0x5f/0x70 x64_sys_call+0x2299/0x2ff0 do_syscall_64+0x89/0x350 entry_SYSCALL_64_after_hwframe+0x76/0x7e ... kmem_cache_destroy cifs_small_rq: Slab cache still has objects when called from cifs_destroy_request_bufs+0x3e/0x50 [cifs] WARNING: mm/slab_common.c:532 at kmem_cache_destroy+0x16b/0x190, CPU#0: modprobe/1577
medium
CVE-2026-23204In the Linux kernel, the following vulnerability has been resolved: net/sched: cls_u32: use skb_header_pointer_careful() skb_header_pointer() does not fully validate negative @offset values. Use skb_header_pointer_careful() instead. GangMin Kim provided a report and a repro fooling u32_classify(): BUG: KASAN: slab-out-of-bounds in u32_classify+0x1180/0x11b0 net/sched/cls_u32.c:221
high
CVE-2026-23202In the Linux kernel, the following vulnerability has been resolved: spi: tegra210-quad: Protect curr_xfer in tegra_qspi_combined_seq_xfer The curr_xfer field is read by the IRQ handler without holding the lock to check if a transfer is in progress. When clearing curr_xfer in the combined sequence transfer loop, protect it with the spinlock to prevent a race with the interrupt handler. Protect the curr_xfer clearing at the exit path of tegra_qspi_combined_seq_xfer() with the spinlock to prevent a race with the interrupt handler that reads this field. Without this protection, the IRQ handler could read a partially updated curr_xfer value, leading to NULL pointer dereference or use-after-free.
medium
CVE-2026-23201In the Linux kernel, the following vulnerability has been resolved: ceph: fix oops due to invalid pointer for kfree() in parse_longname() This fixes a kernel oops when reading ceph snapshot directories (.snap), for example by simply running `ls /mnt/my_ceph/.snap`. The variable str is guarded by __free(kfree), but advanced by one for skipping the initial '_' in snapshot names. Thus, kfree() is called with an invalid pointer. This patch removes the need for advancing the pointer so kfree() is called with correct memory pointer. Steps to reproduce: 1. Create snapshots on a cephfs volume (I've 63 snaps in my testcase) 2. Add cephfs mount to fstab $ echo "[email protected]=/volumes/datapool/stuff/3461082b-ecc9-4e82-8549-3fd2590d3fb6 /mnt/test/stuff ceph acl,noatime,_netdev 0 0" >> /etc/fstab 3. Reboot the system $ systemctl reboot 4. Check if it's really mounted $ mount | grep stuff 5. List snapshots (expected 63 snapshots on my system) $ ls /mnt/test/stuff/.snap Now ls hangs forever and the kernel log shows the oops.
medium
CVE-2026-23197In the Linux kernel, the following vulnerability has been resolved: i2c: imx: preserve error state in block data length handler When a block read returns an invalid length, zero or >I2C_SMBUS_BLOCK_MAX, the length handler sets the state to IMX_I2C_STATE_FAILED. However, i2c_imx_master_isr() unconditionally overwrites this with IMX_I2C_STATE_READ_CONTINUE, causing an endless read loop that overruns buffers and crashes the system. Guard the state transition to preserve error states set by the length handler.
medium
CVE-2026-23196In the Linux kernel, the following vulnerability has been resolved: HID: Intel-thc-hid: Intel-thc: Add safety check for reading DMA buffer Add DMA buffer readiness check before reading DMA buffer to avoid unexpected NULL pointer accessing.
high
CVE-2026-23195In the Linux kernel, the following vulnerability has been resolved: cgroup/dmem: avoid pool UAF An UAF issue was observed: BUG: KASAN: slab-use-after-free in page_counter_uncharge+0x65/0x150 Write of size 8 at addr ffff888106715440 by task insmod/527 CPU: 4 UID: 0 PID: 527 Comm: insmod 6.19.0-rc7-next-20260129+ #11 Tainted: [O]=OOT_MODULE Call Trace: <TASK> dump_stack_lvl+0x82/0xd0 kasan_report+0xca/0x100 kasan_check_range+0x39/0x1c0 page_counter_uncharge+0x65/0x150 dmem_cgroup_uncharge+0x1f/0x260 Allocated by task 527: Freed by task 0: The buggy address belongs to the object at ffff888106715400 which belongs to the cache kmalloc-512 of size 512 The buggy address is located 64 bytes inside of freed 512-byte region [ffff888106715400, ffff888106715600) The buggy address belongs to the physical page: Memory state around the buggy address: ffff888106715300: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc ffff888106715380: fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc fc >ffff888106715400: fa fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ^ ffff888106715480: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb ffff888106715500: fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb fb The issue occurs because a pool can still be held by a caller after its associated memory region is unregistered. The current implementation frees the pool even if users still hold references to it (e.g., before uncharge operations complete). This patch adds a reference counter to each pool, ensuring that a pool is only freed when its reference count drops to zero.
high
CVE-2026-23194In the Linux kernel, the following vulnerability has been resolved: rust_binder: correctly handle FDA objects of length zero Fix a bug where an empty FDA (fd array) object with 0 fds would cause an out-of-bounds error. The previous implementation used `skip == 0` to mean "this is a pointer fixup", but 0 is also the correct skip length for an empty FDA. If the FDA is at the end of the buffer, then this results in an attempt to write 8-bytes out of bounds. This is caught and results in an EINVAL error being returned to userspace. The pattern of using `skip == 0` as a special value originates from the C-implementation of Binder. As part of fixing this bug, this pattern is replaced with a Rust enum. I considered the alternate option of not pushing a fixup when the length is zero, but I think it's cleaner to just get rid of the zero-is-special stuff. The root cause of this bug was diagnosed by Gemini CLI on first try. I used the following prompt: > There appears to be a bug in @drivers/android/binder/thread.rs where > the Fixups oob bug is triggered with 316 304 316 324. This implies > that we somehow ended up with a fixup where buffer A has a pointer to > buffer B, but the pointer is located at an index in buffer A that is > out of bounds. Please investigate the code to find the bug. You may > compare with @drivers/android/binder.c that implements this correctly.
medium
CVE-2026-23193In the Linux kernel, the following vulnerability has been resolved: scsi: target: iscsi: Fix use-after-free in iscsit_dec_session_usage_count() In iscsit_dec_session_usage_count(), the function calls complete() while holding the sess->session_usage_lock. Similar to the connection usage count logic, the waiter signaled by complete() (e.g., in the session release path) may wake up and free the iscsit_session structure immediately. This creates a race condition where the current thread may attempt to execute spin_unlock_bh() on a session structure that has already been deallocated, resulting in a KASAN slab-use-after-free. To resolve this, release the session_usage_lock before calling complete() to ensure all dereferences of the sess pointer are finished before the waiter is allowed to proceed with deallocation.
high
CVE-2026-23192In the Linux kernel, the following vulnerability has been resolved: linkwatch: use __dev_put() in callers to prevent UAF After linkwatch_do_dev() calls __dev_put() to release the linkwatch reference, the device refcount may drop to 1. At this point, netdev_run_todo() can proceed (since linkwatch_sync_dev() sees an empty list and returns without blocking), wait for the refcount to become 1 via netdev_wait_allrefs_any(), and then free the device via kobject_put(). This creates a use-after-free when __linkwatch_run_queue() tries to call netdev_unlock_ops() on the already-freed device. Note that adding netdev_lock_ops()/netdev_unlock_ops() pair in netdev_run_todo() before kobject_put() would not work, because netdev_lock_ops() is conditional - it only locks when netdev_need_ops_lock() returns true. If the device doesn't require ops_lock, linkwatch won't hold any lock, and netdev_run_todo() acquiring the lock won't provide synchronization. Fix this by moving __dev_put() from linkwatch_do_dev() to its callers. The device reference logically pairs with de-listing the device, so it's reasonable for the caller that did the de-listing to release it. This allows placing __dev_put() after all device accesses are complete, preventing UAF. The bug can be reproduced by adding mdelay(2000) after linkwatch_do_dev() in __linkwatch_run_queue(), then running: ip tuntap add mode tun name tun_test ip link set tun_test up ip link set tun_test carrier off ip link set tun_test carrier on sleep 0.5 ip tuntap del mode tun name tun_test KASAN report: ================================================================== BUG: KASAN: use-after-free in netdev_need_ops_lock include/net/netdev_lock.h:33 [inline] BUG: KASAN: use-after-free in netdev_unlock_ops include/net/netdev_lock.h:47 [inline] BUG: KASAN: use-after-free in __linkwatch_run_queue+0x865/0x8a0 net/core/link_watch.c:245 Read of size 8 at addr ffff88804de5c008 by task kworker/u32:10/8123 CPU: 0 UID: 0 PID: 8123 Comm: kworker/u32:10 Not tainted syzkaller #0 PREEMPT(full) Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 Workqueue: events_unbound linkwatch_event Call Trace: <TASK> __dump_stack lib/dump_stack.c:94 [inline] dump_stack_lvl+0x100/0x190 lib/dump_stack.c:120 print_address_description mm/kasan/report.c:378 [inline] print_report+0x156/0x4c9 mm/kasan/report.c:482 kasan_report+0xdf/0x1a0 mm/kasan/report.c:595 netdev_need_ops_lock include/net/netdev_lock.h:33 [inline] netdev_unlock_ops include/net/netdev_lock.h:47 [inline] __linkwatch_run_queue+0x865/0x8a0 net/core/link_watch.c:245 linkwatch_event+0x8f/0xc0 net/core/link_watch.c:304 process_one_work+0x9c2/0x1840 kernel/workqueue.c:3257 process_scheduled_works kernel/workqueue.c:3340 [inline] worker_thread+0x5da/0xe40 kernel/workqueue.c:3421 kthread+0x3b3/0x730 kernel/kthread.c:463 ret_from_fork+0x754/0xaf0 arch/x86/kernel/process.c:158 ret_from_fork_asm+0x1a/0x30 arch/x86/entry/entry_64.S:246 </TASK> ==================================================================
high
CVE-2026-23190In the Linux kernel, the following vulnerability has been resolved: ASoC: amd: fix memory leak in acp3x pdm dma ops
medium
CVE-2026-23189In the Linux kernel, the following vulnerability has been resolved: ceph: fix NULL pointer dereference in ceph_mds_auth_match() The CephFS kernel client has regression starting from 6.18-rc1. We have issue in ceph_mds_auth_match() if fs_name == NULL: const char fs_name = mdsc->fsc->mount_options->mds_namespace; ... if (auth->match.fs_name && strcmp(auth->match.fs_name, fs_name)) { / fsname mismatch, try next one */ return 0; } Patrick Donnelly suggested that: In summary, we should definitely start decoding `fs_name` from the MDSMap and do strict authorizations checks against it. Note that the `-o mds_namespace=foo` should only be used for selecting the file system to mount and nothing else. It's possible no mds_namespace is specified but the kernel will mount the only file system that exists which may have name "foo". This patch reworks ceph_mdsmap_decode() and namespace_equals() with the goal of supporting the suggested concept. Now struct ceph_mdsmap contains m_fs_name field that receives copy of extracted FS name by ceph_extract_encoded_string(). For the case of "old" CephFS file systems, it is used "cephfs" name. [ idryomov: replace redundant %*pE with %s in ceph_mdsmap_decode(), get rid of a series of strlen() calls in ceph_namespace_match(), drop changes to namespace_equals() body to avoid treating empty mds_namespace as equal, drop changes to ceph_mdsc_handle_fsmap() as namespace_equals() isn't an equivalent substitution there ]
medium
CVE-2026-23188In the Linux kernel, the following vulnerability has been resolved: net: usb: r8152: fix resume reset deadlock rtl8152 can trigger device reset during reset which potentially can result in a deadlock: **** DPM device timeout after 10 seconds; 15 seconds until panic **** Call Trace: <TASK> schedule+0x483/0x1370 schedule_preempt_disabled+0x15/0x30 __mutex_lock_common+0x1fd/0x470 __rtl8152_set_mac_address+0x80/0x1f0 dev_set_mac_address+0x7f/0x150 rtl8152_post_reset+0x72/0x150 usb_reset_device+0x1d0/0x220 rtl8152_resume+0x99/0xc0 usb_resume_interface+0x3e/0xc0 usb_resume_both+0x104/0x150 usb_resume+0x22/0x110 The problem is that rtl8152 resume calls reset under tp->control mutex while reset basically re-enters rtl8152 and attempts to acquire the same tp->control lock once again. Reset INACCESSIBLE device outside of tp->control mutex scope to avoid recursive mutex_lock() deadlock.
medium
CVE-2026-23187In the Linux kernel, the following vulnerability has been resolved: pmdomain: imx8m-blk-ctrl: fix out-of-range access of bc->domains Fix out-of-range access of bc->domains in imx8m_blk_ctrl_remove().
high
CVE-2026-23186In the Linux kernel, the following vulnerability has been resolved: hwmon: (acpi_power_meter) Fix deadlocks related to acpi_power_meter_notify() The acpi_power_meter driver's .notify() callback function, acpi_power_meter_notify(), calls hwmon_device_unregister() under a lock that is also acquired by callbacks in sysfs attributes of the device being unregistered which is prone to deadlocks between sysfs access and device removal. Address this by moving the hwmon device removal in acpi_power_meter_notify() outside the lock in question, but notice that doing it alone is not sufficient because two concurrent METER_NOTIFY_CONFIG notifications may be attempting to remove the same device at the same time. To prevent that from happening, add a new lock serializing the execution of the switch () statement in acpi_power_meter_notify(). For simplicity, it is a static mutex which should not be a problem from the performance perspective. The new lock also allows the hwmon_device_register_with_info() in acpi_power_meter_notify() to be called outside the inner lock because it prevents the other notifications handled by that function from manipulating the "resource" object while the hwmon device based on it is being registered. The sending of ACPI netlink messages from acpi_power_meter_notify() is serialized by the new lock too which generally helps to ensure that the order of handling firmware notifications is the same as the order of sending netlink messages related to them. In addition, notice that hwmon_device_register_with_info() may fail in which case resource->hwmon_dev will become an error pointer, so add checks to avoid attempting to unregister the hwmon device pointer to by it in that case to acpi_power_meter_notify() and acpi_power_meter_remove().
medium
CVE-2026-23185In the Linux kernel, the following vulnerability has been resolved: wifi: iwlwifi: mld: cancel mlo_scan_start_wk mlo_scan_start_wk is not canceled on disconnection. In fact, it is not canceled anywhere except in the restart cleanup, where we don't really have to. This can cause an init-after-queue issue: if, for example, the work was queued and then drv_change_interface got executed. This can also cause use-after-free: if the work is executed after the vif is freed.
medium
CVE-2026-23184In the Linux kernel, the following vulnerability has been resolved: binder: fix UAF in binder_netlink_report() Oneway transactions sent to frozen targets via binder_proc_transaction() return a BR_TRANSACTION_PENDING_FROZEN error but they are still treated as successful since the target is expected to thaw at some point. It is then not safe to access 't' after BR_TRANSACTION_PENDING_FROZEN errors as the transaction could have been consumed by the now thawed target. This is the case for binder_netlink_report() which derreferences 't' after a pending frozen error, as pointed out by the following KASAN report: ================================================================== BUG: KASAN: slab-use-after-free in binder_netlink_report.isra.0+0x694/0x6c8 Read of size 8 at addr ffff00000f98ba38 by task binder-util/522 CPU: 4 UID: 0 PID: 522 Comm: binder-util Not tainted 6.19.0-rc6-00015-gc03e9c42ae8f #1 PREEMPT Hardware name: linux,dummy-virt (DT) Call trace: binder_netlink_report.isra.0+0x694/0x6c8 binder_transaction+0x66e4/0x79b8 binder_thread_write+0xab4/0x4440 binder_ioctl+0x1fd4/0x2940 [...] Allocated by task 522: __kmalloc_cache_noprof+0x17c/0x50c binder_transaction+0x584/0x79b8 binder_thread_write+0xab4/0x4440 binder_ioctl+0x1fd4/0x2940 [...] Freed by task 488: kfree+0x1d0/0x420 binder_free_transaction+0x150/0x234 binder_thread_read+0x2d08/0x3ce4 binder_ioctl+0x488/0x2940 [...] ================================================================== Instead, make a transaction copy so the data can be safely accessed by binder_netlink_report() after a pending frozen error. While here, add a comment about not using t->buffer in binder_netlink_report().
medium
CVE-2026-23183In the Linux kernel, the following vulnerability has been resolved: cgroup/dmem: fix NULL pointer dereference when setting max An issue was triggered: BUG: kernel NULL pointer dereference, address: 0000000000000000 #PF: supervisor read access in kernel mode #PF: error_code(0x0000) - not-present page PGD 0 P4D 0 Oops: Oops: 0000 [#1] SMP NOPTI CPU: 15 UID: 0 PID: 658 Comm: bash Tainted: 6.19.0-rc6-next-2026012 Tainted: [O]=OOT_MODULE Hardware name: QEMU Standard PC (i440FX + PIIX, 1996), RIP: 0010:strcmp+0x10/0x30 RSP: 0018:ffffc900017f7dc0 EFLAGS: 00000246 RAX: 0000000000000000 RBX: 0000000000000000 RCX: ffff888107cd4358 RDX: 0000000019f73907 RSI: ffffffff82cc381a RDI: 0000000000000000 RBP: ffff8881016bef0d R08: 000000006c0e7145 R09: 0000000056c0e714 R10: 0000000000000001 R11: ffff888107cd4358 R12: 0007ffffffffffff R13: ffff888101399200 R14: ffff888100fcb360 R15: 0007ffffffffffff CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000000 CR3: 0000000105c79000 CR4: 00000000000006f0 Call Trace: <TASK> dmemcg_limit_write.constprop.0+0x16d/0x390 ? __pfx_set_resource_max+0x10/0x10 kernfs_fop_write_iter+0x14e/0x200 vfs_write+0x367/0x510 ksys_write+0x66/0xe0 do_syscall_64+0x6b/0x390 entry_SYSCALL_64_after_hwframe+0x76/0x7e RIP: 0033:0x7f42697e1887 It was trriggered setting max without limitation, the command is like: "echo test/region0 > dmem.max". To fix this issue, add check whether options is valid after parsing the region_name.
medium
CVE-2026-23181In the Linux kernel, the following vulnerability has been resolved: btrfs: sync read disk super and set block size When the user performs a btrfs mount, the block device is not set correctly. The user sets the block size of the block device to 0x4000 by executing the BLKBSZSET command. Since the block size change also changes the mapping->flags value, this further affects the result of the mapping_min_folio_order() calculation. Let's analyze the following two scenarios: Scenario 1: Without executing the BLKBSZSET command, the block size is 0x1000, and mapping_min_folio_order() returns 0; Scenario 2: After executing the BLKBSZSET command, the block size is 0x4000, and mapping_min_folio_order() returns 2. do_read_cache_folio() allocates a folio before the BLKBSZSET command is executed. This results in the allocated folio having an order value of 0. Later, after BLKBSZSET is executed, the block size increases to 0x4000, and the mapping_min_folio_order() calculation result becomes 2. This leads to two undesirable consequences: 1. filemap_add_folio() triggers a VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping)) assertion. 2. The syzbot report [1] shows a null pointer dereference in create_empty_buffers() due to a buffer head allocation failure. Synchronization should be established based on the inode between the BLKBSZSET command and read cache page to prevent inconsistencies in block size or mapping flags before and after folio allocation. [1] KASAN: null-ptr-deref in range [0x0000000000000000-0x0000000000000007] RIP: 0010:create_empty_buffers+0x4d/0x480 fs/buffer.c:1694 Call Trace: folio_create_buffers+0x109/0x150 fs/buffer.c:1802 block_read_full_folio+0x14c/0x850 fs/buffer.c:2403 filemap_read_folio+0xc8/0x2a0 mm/filemap.c:2496 do_read_cache_folio+0x266/0x5c0 mm/filemap.c:4096 do_read_cache_page mm/filemap.c:4162 [inline] read_cache_page_gfp+0x29/0x120 mm/filemap.c:4195 btrfs_read_disk_super+0x192/0x500 fs/btrfs/volumes.c:1367
medium
CVE-2026-23180In the Linux kernel, the following vulnerability has been resolved: dpaa2-switch: add bounds check for if_id in IRQ handler The IRQ handler extracts if_id from the upper 16 bits of the hardware status register and uses it to index into ethsw->ports[] without validation. Since if_id can be any 16-bit value (0-65535) but the ports array is only allocated with sw_attr.num_ifs elements, this can lead to an out-of-bounds read potentially. Add a bounds check before accessing the array, consistent with the existing validation in dpaa2_switch_rx().
high
CVE-2026-23179In the Linux kernel, the following vulnerability has been resolved: nvmet-tcp: fixup hang in nvmet_tcp_listen_data_ready() When the socket is closed while in TCP_LISTEN a callback is run to flush all outstanding packets, which in turns calls nvmet_tcp_listen_data_ready() with the sk_callback_lock held. So we need to check if we are in TCP_LISTEN before attempting to get the sk_callback_lock() to avoid a deadlock.
medium
CVE-2026-23177In the Linux kernel, the following vulnerability has been resolved: mm, shmem: prevent infinite loop on truncate race When truncating a large swap entry, shmem_free_swap() returns 0 when the entry's index doesn't match the given index due to lookup alignment. The failure fallback path checks if the entry crosses the end border and aborts when it happens, so truncate won't erase an unexpected entry or range. But one scenario was ignored. When `index` points to the middle of a large swap entry, and the large swap entry doesn't go across the end border, find_get_entries() will return that large swap entry as the first item in the batch with `indices[0]` equal to `index`. The entry's base index will be smaller than `indices[0]`, so shmem_free_swap() will fail and return 0 due to the "base < index" check. The code will then call shmem_confirm_swap(), get the order, check if it crosses the END boundary (which it doesn't), and retry with the same index. The next iteration will find the same entry again at the same index with same indices, leading to an infinite loop. Fix this by retrying with a round-down index, and abort if the index is smaller than the truncate range.
medium
CVE-2026-23176In the Linux kernel, the following vulnerability has been resolved: platform/x86: toshiba_haps: Fix memory leaks in add/remove routines toshiba_haps_add() leaks the haps object allocated by it if it returns an error after allocating that object successfully. toshiba_haps_remove() does not free the object pointed to by toshiba_haps before clearing that pointer, so it becomes unreachable allocated memory. Address these memory leaks by using devm_kzalloc() for allocating the memory in question.
medium
CVE-2026-23175In the Linux kernel, the following vulnerability has been resolved: net: cpsw: Execute ndo_set_rx_mode callback in a work queue Commit 1767bb2d47b7 ("ipv6: mcast: Don't hold RTNL for IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP.") removed the RTNL lock for IPV6_ADD_MEMBERSHIP and MCAST_JOIN_GROUP operations. However, this change triggered the following call trace on my BeagleBone Black board: WARNING: net/8021q/vlan_core.c:236 at vlan_for_each+0x120/0x124, CPU#0: rpcbind/481 RTNL: assertion failed at net/8021q/vlan_core.c (236) Modules linked in: CPU: 0 UID: 997 PID: 481 Comm: rpcbind Not tainted 6.19.0-rc7-next-20260130-yocto-standard+ #35 PREEMPT Hardware name: Generic AM33XX (Flattened Device Tree) Call trace: unwind_backtrace from show_stack+0x28/0x2c show_stack from dump_stack_lvl+0x30/0x38 dump_stack_lvl from __warn+0xb8/0x11c __warn from warn_slowpath_fmt+0x130/0x194 warn_slowpath_fmt from vlan_for_each+0x120/0x124 vlan_for_each from cpsw_add_mc_addr+0x54/0x98 cpsw_add_mc_addr from __hw_addr_ref_sync_dev+0xc4/0xec __hw_addr_ref_sync_dev from __dev_mc_add+0x78/0x88 __dev_mc_add from igmp6_group_added+0x84/0xec igmp6_group_added from __ipv6_dev_mc_inc+0x1fc/0x2f0 __ipv6_dev_mc_inc from __ipv6_sock_mc_join+0x124/0x1b4 __ipv6_sock_mc_join from do_ipv6_setsockopt+0x84c/0x1168 do_ipv6_setsockopt from ipv6_setsockopt+0x88/0xc8 ipv6_setsockopt from do_sock_setsockopt+0xe8/0x19c do_sock_setsockopt from __sys_setsockopt+0x84/0xac __sys_setsockopt from ret_fast_syscall+0x0/0x54 This trace occurs because vlan_for_each() is called within cpsw_ndo_set_rx_mode(), which expects the RTNL lock to be held. Since modifying vlan_for_each() to operate without the RTNL lock is not straightforward, and because ndo_set_rx_mode() is invoked both with and without the RTNL lock across different code paths, simply adding rtnl_lock() in cpsw_ndo_set_rx_mode() is not a viable solution. To resolve this issue, we opt to execute the actual processing within a work queue, following the approach used by the icssg-prueth driver. Please note: To reproduce this issue, I manually reverted the changes to am335x-bone-common.dtsi from commit c477358e66a3 ("ARM: dts: am335x-bone: switch to new cpsw switch drv") in order to revert to the legacy cpsw driver.
high
CVE-2025-71224In the Linux kernel, the following vulnerability has been resolved: wifi: mac80211: ocb: skip rx_no_sta when interface is not joined ieee80211_ocb_rx_no_sta() assumes a valid channel context, which is only present after JOIN_OCB. RX may run before JOIN_OCB is executed, in which case the OCB interface is not operational. Skip RX peer handling when the interface is not joined to avoid warnings in the RX path.
medium
CVE-2025-71223In the Linux kernel, the following vulnerability has been resolved: smb/server: fix refcount leak in smb2_open() When ksmbd_vfs_getattr() fails, the reference count of ksmbd_file must be released.
high
CVE-2025-71221In the Linux kernel, the following vulnerability has been resolved: dmaengine: mmp_pdma: Fix race condition in mmp_pdma_residue() Add proper locking in mmp_pdma_residue() to prevent use-after-free when accessing descriptor list and descriptor contents. The race occurs when multiple threads call tx_status() while the tasklet on another CPU is freeing completed descriptors: CPU 0 CPU 1 ----- ----- mmp_pdma_tx_status() mmp_pdma_residue() -> NO LOCK held list_for_each_entry(sw, ..) DMA interrupt dma_do_tasklet() -> spin_lock(&desc_lock) list_move(sw->node, ...) spin_unlock(&desc_lock) | dma_pool_free(sw) <- FREED! -> access sw->desc <- UAF! This issue can be reproduced when running dmatest on the same channel with multiple threads (threads_per_chan > 1). Fix by protecting the chain_running list iteration and descriptor access with the chan->desc_lock spinlock.
medium
CVE-2025-71220In the Linux kernel, the following vulnerability has been resolved: smb/server: call ksmbd_session_rpc_close() on error path in create_smb2_pipe() When ksmbd_iov_pin_rsp() fails, we should call ksmbd_session_rpc_close().
high
CVE-2025-71204In the Linux kernel, the following vulnerability has been resolved: smb/server: fix refcount leak in parse_durable_handle_context() When the command is a replay operation and -ENOEXEC is returned, the refcount of ksmbd_file must be released.
high
CVE-2025-71203In the Linux kernel, the following vulnerability has been resolved: riscv: Sanitize syscall table indexing under speculation The syscall number is a user-controlled value used to index into the syscall table. Use array_index_nospec() to clamp this value after the bounds check to prevent speculative out-of-bounds access and subsequent data leakage via cache side channels.
high
CVE-2026-23209In the Linux kernel, the following vulnerability has been resolved: macvlan: fix error recovery in macvlan_common_newlink() valis provided a nice repro to crash the kernel: ip link add p1 type veth peer p2 ip link set address 00:00:00:00:00:20 dev p1 ip link set up dev p1 ip link set up dev p2 ip link add mv0 link p2 type macvlan mode source ip link add invalid% link p2 type macvlan mode source macaddr add 00:00:00:00:00:20 ping -c1 -I p1 1.2.3.4 He also gave a very detailed analysis: <quote valis> The issue is triggered when a new macvlan link is created with MACVLAN_MODE_SOURCE mode and MACVLAN_MACADDR_ADD (or MACVLAN_MACADDR_SET) parameter, lower device already has a macvlan port and register_netdevice() called from macvlan_common_newlink() fails (e.g. because of the invalid link name). In this case macvlan_hash_add_source is called from macvlan_change_sources() / macvlan_common_newlink(): This adds a reference to vlan to the port's vlan_source_hash using macvlan_source_entry. vlan is a pointer to the priv data of the link that is being created. When register_netdevice() fails, the error is returned from macvlan_newlink() to rtnl_newlink_create(): if (ops->newlink) err = ops->newlink(dev, &params, extack); else err = register_netdevice(dev); if (err < 0) { free_netdev(dev); goto out; } and free_netdev() is called, causing a kvfree() on the struct net_device that is still referenced in the source entry attached to the lower device's macvlan port. Now all packets sent on the macvlan port with a matching source mac address will trigger a use-after-free in macvlan_forward_source(). </quote valis> With all that, my fix is to make sure we call macvlan_flush_sources() regardless of @create value whenever "goto destroy_macvlan_port;" path is taken. Many thanks to valis for following up on this issue.
medium
CVE-2026-23208In the Linux kernel, the following vulnerability has been resolved: ALSA: usb-audio: Prevent excessive number of frames In this case, the user constructed the parameters with maxpacksize 40 for rate 22050 / pps 1000, and packsize[0] 22 packsize[1] 23. The buffer size for each data URB is maxpacksize * packets, which in this example is 40 * 6 = 240; When the user performs a write operation to send audio data into the ALSA PCM playback stream, the calculated number of frames is packsize[0] * packets = 264, which exceeds the allocated URB buffer size, triggering the out-of-bounds (OOB) issue reported by syzbot [1]. Added a check for the number of single data URB frames when calculating the number of frames to prevent [1]. [1] BUG: KASAN: slab-out-of-bounds in copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487 Write of size 264 at addr ffff88804337e800 by task syz.0.17/5506 Call Trace: copy_to_urb+0x261/0x460 sound/usb/pcm.c:1487 prepare_playback_urb+0x953/0x13d0 sound/usb/pcm.c:1611 prepare_outbound_urb+0x377/0xc50 sound/usb/endpoint.c:333
medium
CVE-2026-23200In the Linux kernel, the following vulnerability has been resolved: ipv6: Fix ECMP sibling count mismatch when clearing RTF_ADDRCONF syzbot reported a kernel BUG in fib6_add_rt2node() when adding an IPv6 route. [0] Commit f72514b3c569 ("ipv6: clear RA flags when adding a static route") introduced logic to clear RTF_ADDRCONF from existing routes when a static route with the same nexthop is added. However, this causes a problem when the existing route has a gateway. When RTF_ADDRCONF is cleared from a route that has a gateway, that route becomes eligible for ECMP, i.e. rt6_qualify_for_ecmp() returns true. The issue is that this route was never added to the fib6_siblings list. This leads to a mismatch between the following counts: - The sibling count computed by iterating fib6_next chain, which includes the newly ECMP-eligible route - The actual siblings in fib6_siblings list, which does not include that route When a subsequent ECMP route is added, fib6_add_rt2node() hits BUG_ON(sibling->fib6_nsiblings != rt->fib6_nsiblings) because the counts don't match. Fix this by only clearing RTF_ADDRCONF when the existing route does not have a gateway. Routes without a gateway cannot qualify for ECMP anyway (rt6_qualify_for_ecmp() requires fib_nh_gw_family), so clearing RTF_ADDRCONF on them is safe and matches the original intent of the commit. [0]: kernel BUG at net/ipv6/ip6_fib.c:1217! Oops: invalid opcode: 0000 [#1] SMP KASAN PTI CPU: 0 UID: 0 PID: 6010 Comm: syz.0.17 Not tainted syzkaller #0 PREEMPT(full) Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 10/25/2025 RIP: 0010:fib6_add_rt2node+0x3433/0x3470 net/ipv6/ip6_fib.c:1217 [...] Call Trace: <TASK> fib6_add+0x8da/0x18a0 net/ipv6/ip6_fib.c:1532 __ip6_ins_rt net/ipv6/route.c:1351 [inline] ip6_route_add+0xde/0x1b0 net/ipv6/route.c:3946 ipv6_route_ioctl+0x35c/0x480 net/ipv6/route.c:4571 inet6_ioctl+0x219/0x280 net/ipv6/af_inet6.c:577 sock_do_ioctl+0xdc/0x300 net/socket.c:1245 sock_ioctl+0x576/0x790 net/socket.c:1366 vfs_ioctl fs/ioctl.c:51 [inline] __do_sys_ioctl fs/ioctl.c:597 [inline] __se_sys_ioctl+0xfc/0x170 fs/ioctl.c:583 do_syscall_x64 arch/x86/entry/syscall_64.c:63 [inline] do_syscall_64+0xfa/0xf80 arch/x86/entry/syscall_64.c:94 entry_SYSCALL_64_after_hwframe+0x77/0x7f
medium
CVE-2026-23199In the Linux kernel, the following vulnerability has been resolved: procfs: avoid fetching build ID while holding VMA lock Fix PROCMAP_QUERY to fetch optional build ID only after dropping mmap_lock or per-VMA lock, whichever was used to lock VMA under question, to avoid deadlock reported by syzbot: -> #1 (&mm->mmap_lock){++++}-{4:4}: __might_fault+0xed/0x170 _copy_to_iter+0x118/0x1720 copy_page_to_iter+0x12d/0x1e0 filemap_read+0x720/0x10a0 blkdev_read_iter+0x2b5/0x4e0 vfs_read+0x7f4/0xae0 ksys_read+0x12a/0x250 do_syscall_64+0xcb/0xf80 entry_SYSCALL_64_after_hwframe+0x77/0x7f -> #0 (&sb->s_type->i_mutex_key#8){++++}-{4:4}: __lock_acquire+0x1509/0x26d0 lock_acquire+0x185/0x340 down_read+0x98/0x490 blkdev_read_iter+0x2a7/0x4e0 __kernel_read+0x39a/0xa90 freader_fetch+0x1d5/0xa80 __build_id_parse.isra.0+0xea/0x6a0 do_procmap_query+0xd75/0x1050 procfs_procmap_ioctl+0x7a/0xb0 __x64_sys_ioctl+0x18e/0x210 do_syscall_64+0xcb/0xf80 entry_SYSCALL_64_after_hwframe+0x77/0x7f other info that might help us debug this: Possible unsafe locking scenario: CPU0 CPU1 ---- ---- rlock(&mm->mmap_lock); lock(&sb->s_type->i_mutex_key#8); lock(&mm->mmap_lock); rlock(&sb->s_type->i_mutex_key#8); *** DEADLOCK *** This seems to be exacerbated (as we haven't seen these syzbot reports before that) by the recent: 777a8560fd29 ("lib/buildid: use __kernel_read() for sleepable context") To make this safe, we need to grab file refcount while VMA is still locked, but other than that everything is pretty straightforward. Internal build_id_parse() API assumes VMA is passed, but it only needs the underlying file reference, so just add another variant build_id_parse_file() that expects file passed directly. [[email protected]: fix up kerneldoc]
high
CVE-2026-23173In the Linux kernel, the following vulnerability has been resolved: net/mlx5e: TC, delete flows only for existing peers When deleting TC steering flows, iterate only over actual devcom peers instead of assuming all possible ports exist. This avoids touching non-existent peers and ensures cleanup is limited to devices the driver is currently connected to. BUG: kernel NULL pointer dereference, address: 0000000000000008 #PF: supervisor write access in kernel mode #PF: error_code(0x0002) - not-present page PGD 133c8a067 P4D 0 Oops: Oops: 0002 [#1] SMP CPU: 19 UID: 0 PID: 2169 Comm: tc Not tainted 6.18.0+ #156 NONE Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS rel-1.16.0-0-gd239552ce722-prebuilt.qemu.org 04/01/2014 RIP: 0010:mlx5e_tc_del_fdb_peers_flow+0xbe/0x200 [mlx5_core] Code: 00 00 a8 08 74 a8 49 8b 46 18 f6 c4 02 74 9f 4c 8d bf a0 12 00 00 4c 89 ff e8 0e e7 96 e1 49 8b 44 24 08 49 8b 0c 24 4c 89 ff <48> 89 41 08 48 89 08 49 89 2c 24 49 89 5c 24 08 e8 7d ce 96 e1 49 RSP: 0018:ff11000143867528 EFLAGS: 00010246 RAX: 0000000000000000 RBX: dead000000000122 RCX: 0000000000000000 RDX: ff11000143691580 RSI: ff110001026e5000 RDI: ff11000106f3d2a0 RBP: dead000000000100 R08: 00000000000003fd R09: 0000000000000002 R10: ff11000101c75690 R11: ff1100085faea178 R12: ff11000115f0ae78 R13: 0000000000000000 R14: ff11000115f0a800 R15: ff11000106f3d2a0 FS: 00007f35236bf740(0000) GS:ff110008dc809000(0000) knlGS:0000000000000000 CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 CR2: 0000000000000008 CR3: 0000000157a01001 CR4: 0000000000373eb0 Call Trace: <TASK> mlx5e_tc_del_flow+0x46/0x270 [mlx5_core] mlx5e_flow_put+0x25/0x50 [mlx5_core] mlx5e_delete_flower+0x2a6/0x3e0 [mlx5_core] tc_setup_cb_reoffload+0x20/0x80 fl_reoffload+0x26f/0x2f0 [cls_flower] ? mlx5e_tc_reoffload_flows_work+0xc0/0xc0 [mlx5_core] ? mlx5e_tc_reoffload_flows_work+0xc0/0xc0 [mlx5_core] tcf_block_playback_offloads+0x9e/0x1c0 tcf_block_unbind+0x7b/0xd0 tcf_block_setup+0x186/0x1d0 tcf_block_offload_cmd.isra.0+0xef/0x130 tcf_block_offload_unbind+0x43/0x70 __tcf_block_put+0x85/0x160 ingress_destroy+0x32/0x110 [sch_ingress] __qdisc_destroy+0x44/0x100 qdisc_graft+0x22b/0x610 tc_get_qdisc+0x183/0x4d0 rtnetlink_rcv_msg+0x2d7/0x3d0 ? rtnl_calcit.isra.0+0x100/0x100 netlink_rcv_skb+0x53/0x100 netlink_unicast+0x249/0x320 ? __alloc_skb+0x102/0x1f0 netlink_sendmsg+0x1e3/0x420 __sock_sendmsg+0x38/0x60 ____sys_sendmsg+0x1ef/0x230 ? copy_msghdr_from_user+0x6c/0xa0 ___sys_sendmsg+0x7f/0xc0 ? ___sys_recvmsg+0x8a/0xc0 ? __sys_sendto+0x119/0x180 __sys_sendmsg+0x61/0xb0 do_syscall_64+0x55/0x640 entry_SYSCALL_64_after_hwframe+0x4b/0x53 RIP: 0033:0x7f35238bb764 Code: 15 b9 86 0c 00 f7 d8 64 89 02 b8 ff ff ff ff eb bf 0f 1f 44 00 00 f3 0f 1e fa 80 3d e5 08 0d 00 00 74 13 b8 2e 00 00 00 0f 05 <48> 3d 00 f0 ff ff 77 4c c3 0f 1f 00 55 48 89 e5 48 83 ec 20 89 55 RSP: 002b:00007ffed4c35638 EFLAGS: 00000202 ORIG_RAX: 000000000000002e RAX: ffffffffffffffda RBX: 000055a2efcc75e0 RCX: 00007f35238bb764 RDX: 0000000000000000 RSI: 00007ffed4c356a0 RDI: 0000000000000003 RBP: 00007ffed4c35710 R08: 0000000000000010 R09: 00007f3523984b20 R10: 0000000000000004 R11: 0000000000000202 R12: 00007ffed4c35790 R13: 000000006947df8f R14: 000055a2efcc75e0 R15: 00007ffed4c35780
medium
CVE-2026-23172In the Linux kernel, the following vulnerability has been resolved: net: wwan: t7xx: fix potential skb->frags overflow in RX path When receiving data in the DPMAIF RX path, the t7xx_dpmaif_set_frag_to_skb() function adds page fragments to an skb without checking if the number of fragments has exceeded MAX_SKB_FRAGS. This could lead to a buffer overflow in skb_shinfo(skb)->frags[] array, corrupting adjacent memory and potentially causing kernel crashes or other undefined behavior. This issue was identified through static code analysis by comparing with a similar vulnerability fixed in the mt76 driver commit b102f0c522cf ("mt76: fix array overflow on receiving too many fragments for a packet"). The vulnerability could be triggered if the modem firmware sends packets with excessive fragments. While under normal protocol conditions (MTU 3080 bytes, BAT buffer 3584 bytes), a single packet should not require additional fragments, the kernel should not blindly trust firmware behavior. Malicious, buggy, or compromised firmware could potentially craft packets with more fragments than the kernel expects. Fix this by adding a bounds check before calling skb_add_rx_frag() to ensure nr_frags does not exceed MAX_SKB_FRAGS. The check must be performed before unmapping to avoid a page leak and double DMA unmap during device teardown.
high
CVE-2026-23171In the Linux kernel, the following vulnerability has been resolved: bonding: fix use-after-free due to enslave fail after slave array update Fix a use-after-free which happens due to enslave failure after the new slave has been added to the array. Since the new slave can be used for Tx immediately, we can use it after it has been freed by the enslave error cleanup path which frees the allocated slave memory. Slave update array is supposed to be called last when further enslave failures are not expected. Move it after xdp setup to avoid any problems. It is very easy to reproduce the problem with a simple xdp_pass prog: ip l add bond1 type bond mode balance-xor ip l set bond1 up ip l set dev bond1 xdp object xdp_pass.o sec xdp_pass ip l add dumdum type dummy Then run in parallel: while :; do ip l set dumdum master bond1 1>/dev/null 2>&1; done; mausezahn bond1 -a own -b rand -A rand -B 1.1.1.1 -c 0 -t tcp "dp=1-1023, flags=syn" The crash happens almost immediately: [ 605.602850] Oops: general protection fault, probably for non-canonical address 0xe0e6fc2460000137: 0000 [#1] SMP KASAN NOPTI [ 605.602916] KASAN: maybe wild-memory-access in range [0x07380123000009b8-0x07380123000009bf] [ 605.602946] CPU: 0 UID: 0 PID: 2445 Comm: mausezahn Kdump: loaded Tainted: G B 6.19.0-rc6+ #21 PREEMPT(voluntary) [ 605.602979] Tainted: [B]=BAD_PAGE [ 605.602998] Hardware name: QEMU Standard PC (Q35 + ICH9, 2009), BIOS 1.16.3-debian-1.16.3-2 04/01/2014 [ 605.603032] RIP: 0010:netdev_core_pick_tx+0xcd/0x210 [ 605.603063] Code: 48 89 fa 48 c1 ea 03 80 3c 02 00 0f 85 3e 01 00 00 48 b8 00 00 00 00 00 fc ff df 4c 8b 6b 08 49 8d 7d 30 48 89 fa 48 c1 ea 03 <80> 3c 02 00 0f 85 25 01 00 00 49 8b 45 30 4c 89 e2 48 89 ee 48 89 [ 605.603111] RSP: 0018:ffff88817b9af348 EFLAGS: 00010213 [ 605.603145] RAX: dffffc0000000000 RBX: ffff88817d28b420 RCX: 0000000000000000 [ 605.603172] RDX: 00e7002460000137 RSI: 0000000000000008 RDI: 07380123000009be [ 605.603199] RBP: ffff88817b541a00 R08: 0000000000000001 R09: fffffbfff3ed8c0c [ 605.603226] R10: ffffffff9f6c6067 R11: 0000000000000001 R12: 0000000000000000 [ 605.603253] R13: 073801230000098e R14: ffff88817d28b448 R15: ffff88817b541a84 [ 605.603286] FS: 00007f6570ef67c0(0000) GS:ffff888221dfa000(0000) knlGS:0000000000000000 [ 605.603319] CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033 [ 605.603343] CR2: 00007f65712fae40 CR3: 000000011371b000 CR4: 0000000000350ef0 [ 605.603373] Call Trace: [ 605.603392] <TASK> [ 605.603410] __dev_queue_xmit+0x448/0x32a0 [ 605.603434] ? __pfx_vprintk_emit+0x10/0x10 [ 605.603461] ? __pfx_vprintk_emit+0x10/0x10 [ 605.603484] ? __pfx___dev_queue_xmit+0x10/0x10 [ 605.603507] ? bond_start_xmit+0xbfb/0xc20 [bonding] [ 605.603546] ? _printk+0xcb/0x100 [ 605.603566] ? __pfx__printk+0x10/0x10 [ 605.603589] ? bond_start_xmit+0xbfb/0xc20 [bonding] [ 605.603627] ? add_taint+0x5e/0x70 [ 605.603648] ? add_taint+0x2a/0x70 [ 605.603670] ? end_report.cold+0x51/0x75 [ 605.603693] ? bond_start_xmit+0xbfb/0xc20 [bonding] [ 605.603731] bond_start_xmit+0x623/0xc20 [bonding]
high