Windows Server 2012 September 2017 Security Updates

critical Nessus Plugin ID 103132

Synopsis

The remote Windows host is affected by multiple vulnerabilities.

Description

The remote Windows host is missing security update 4038786 or cumulative update 4038799. It is, therefore, affected by multiple vulnerabilities :

- A race condition that could lead to a remote code execution vulnerability exists in NetBT Session Services when NetBT fails to maintain certain sequencing requirements. (CVE-2017-0161)

- An elevation of privilege vulnerability exists in Windows when the Windows kernel-mode driver fails to properly handle objects in memory. An attacker who successfully exploited this vulnerability could run arbitrary code in kernel mode. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights.
(CVE-2017-8675)

- An information disclosure vulnerability exists in the way that the Windows Graphics Device Interface (GDI) handles objects in memory, allowing an attacker to retrieve information from a targeted system. By itself, the information disclosure does not allow arbitrary code execution; however, it could allow arbitrary code to be run if the attacker uses it in combination with another vulnerability. (CVE-2017-8676)

- A remote code execution vulnerability exists when the Windows font library improperly handles specially crafted embedded fonts. An attacker who successfully exploited this vulnerability could take control of the affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. (CVE-2017-8682)

- An information disclosure vulnerability exists when the Microsoft Windows Graphics Component improperly handles objects in memory. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. (CVE-2017-8683)

- A information disclosure vulnerability exists when the Windows GDI+ component improperly discloses kernel memory addresses. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. (CVE-2017-8677, CVE-2017-8680, CVE-2017-8681, CVE-2017-8684)

- A memory corruption vulnerability exists in the Windows Server DHCP service when an attacker sends specially crafted packets to a DHCP failover server. An attacker who successfully exploited the vulnerability could either run arbitrary code on the DHCP failover server or cause the DHCP service to become nonresponsive. To exploit the vulnerability, an attacker could send a specially crafted packet to a DHCP server. However, the DHCP server must be set to failover mode for the attack to succeed. The security update addresses the vulnerability by correcting how DHCP failover servers handle network packets. (CVE-2017-8686)

- An Information disclosure vulnerability exists in Windows kernel that could allow an attacker to retrieve information that could lead to a Kernel Address Space Layout Randomization (KASLR) bypass. An attacker who successfully exploited this vulnerability could retrieve the memory address of a kernel object. (CVE-2017-8687)

- An information disclosure vulnerability exists in the way that the Windows Graphics Device Interface+ (GDI+) handles objects in memory, allowing an attacker to retrieve information from a targeted system. By itself, the information disclosure does not allow arbitrary code execution; however, it could allow arbitrary code to be run if the attacker uses it in combination with another vulnerability. (CVE-2017-8688)

- A remote code execution vulnerability exists due to the way Windows Uniscribe handles objects in memory. An attacker who successfully exploited this vulnerability could take control of the affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights.
(CVE-2017-8692)

- An information disclosure vulnerability exists when Windows Uniscribe improperly discloses the contents of its memory. An attacker who successfully exploited the vulnerability could obtain information to further compromise the users system. There are multiple ways an attacker could exploit the vulnerability, such as by convincing a user to open a specially crafted document or by convincing a user to visit an untrusted webpage.
The update addresses the vulnerability by correcting how Windows Uniscribe handles objects in memory.
(CVE-2017-8695)

- A remote code execution vulnerability exists when Windows Shell does not properly validate file copy destinations. An attacker who successfully exploited the vulnerability could run arbitrary code in the context of the current user.
(CVE-2017-8699)

- An information disclosure vulnerability exists when the Windows kernel fails to properly initialize a memory address, allowing an attacker to retrieve information that could lead to a Kernel Address Space Layout Randomization (KASLR) bypass. An attacker who successfully exploited this vulnerability could retrieve the base address of the kernel driver from a compromised process. (CVE-2017-8708)

- An information disclosure vulnerability exists when Windows Hyper-V on a host operating system fails to properly validate input from an authenticated user on a guest operating system. (CVE-2017-8713)

- A remote code execution vulnerability exists in the VM Host Agent Service of Remote Desktop Virtual Host role when it fails to properly validate input from an authenticated user on a guest operating system. To exploit the vulnerability, an attacker could issue a specially crafted certificate on the guest operating system that could cause the VM host agent service on the host operating system to execute arbitrary code. The Remote Desktop Virtual Host role is not enabled by default. An attacker who successfully exploited the vulnerability could execute arbitrary code on the host operating system. The security update addresses the vulnerability by correcting how VM host agent service validates guest operating system user input.
(CVE-2017-8714)

- An information disclosure vulnerability exists when the Windows kernel improperly handles objects in memory. An attacker who successfully exploited this vulnerability could obtain information to further compromise the users system. (CVE-2017-8678, CVE-2017-8679, CVE-2017-8709, CVE-2017-8719)

- An elevation of privilege vulnerability exists in Windows when the Win32k component fails to properly handle objects in memory. An attacker who successfully exploited this vulnerability could run arbitrary code in kernel mode. An attacker could then install programs;
view, change, or delete data; or create new accounts with full user rights. (CVE-2017-8720)

- A spoofing vulnerability exists when Internet Explorer improperly handles specific HTML content. An attacker who successfully exploited this vulnerability could trick a user into believing that the user was visiting a legitimate website. The specially crafted website could either spoof content or serve as a pivot to chain an attack with other vulnerabilities in web services. To exploit the vulnerability, the user must either browse to a malicious website or be redirected to it. In an email attack scenario, an attacker could send an email message in an attempt to convince the user to click a link to the malicious website. (CVE-2017-8733)

- A remote code execution vulnerability exists when Microsoft Windows PDF Library improperly handles objects in memory. The vulnerability could corrupt memory in a way that enables an attacker to execute arbitrary code in the context of the current user. An attacker who successfully exploited the vulnerability could gain the same user rights as the current user. (CVE-2017-8728, CVE-2017-8737)

- A remote code execution vulnerability exists in the way that Microsoft browser JavaScript engines render content when handling objects in memory. The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-8741)

- A remote code execution vulnerability exists when Internet Explorer improperly accesses objects in memory.
The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-8747)

- A remote code execution vulnerability exists when Internet Explorer improperly accesses objects in memory.
The vulnerability could corrupt memory in such a way that an attacker could execute arbitrary code in the context of the current user. (CVE-2017-8747, CVE-2017-8749)

- A remote code execution vulnerability exists when Microsoft .NET Framework processes untrusted input. An attacker who successfully exploited this vulnerability in software using the .NET framework could take control of an affected system. An attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. (CVE-2017-8759)
- An information disclosure vulnerability exists in Microsoft browsers in the scripting engines due to improper handling of objects in memory. An unauthenticated, remote attacker can exploit this, by convincing a user to visit a specially crafted website, to disclose files on a user's computer. (CVE-2017-8529)

Solution

Apply Security Only update KB4038786 or Cumulative update KB4038799.

See Also

http://www.nessus.org/u?91b2bd74

http://www.nessus.org/u?35364720

Plugin Details

Severity: Critical

ID: 103132

File Name: smb_nt_ms17_sep_4038799.nasl

Version: 1.14

Type: local

Agent: windows

Published: 9/12/2017

Updated: 6/17/2024

Supported Sensors: Nessus Agent, Nessus

Risk Information

VPR

Risk Factor: Critical

Score: 9.8

CVSS v2

Risk Factor: High

Base Score: 9.3

Temporal Score: 8.1

Vector: CVSS2#AV:N/AC:M/Au:N/C:C/I:C/A:C

CVSS Score Source: CVE-2017-8759

CVSS v3

Risk Factor: Critical

Base Score: 9.8

Temporal Score: 9.4

Vector: CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H

Temporal Vector: CVSS:3.0/E:H/RL:O/RC:C

CVSS Score Source: CVE-2017-8686

Vulnerability Information

CPE: cpe:/o:microsoft:windows_server_2012

Required KB Items: SMB/MS_Bulletin_Checks/Possible

Exploit Available: true

Exploit Ease: Exploits are available

Patch Publication Date: 9/12/2017

Vulnerability Publication Date: 9/12/2017

CISA Known Exploited Vulnerability Due Dates: 5/3/2022

Exploitable With

CANVAS (CANVAS)

Core Impact

Reference Information

CVE: CVE-2017-0161, CVE-2017-8529, CVE-2017-8675, CVE-2017-8676, CVE-2017-8677, CVE-2017-8678, CVE-2017-8679, CVE-2017-8680, CVE-2017-8681, CVE-2017-8682, CVE-2017-8683, CVE-2017-8684, CVE-2017-8686, CVE-2017-8687, CVE-2017-8688, CVE-2017-8692, CVE-2017-8695, CVE-2017-8699, CVE-2017-8708, CVE-2017-8709, CVE-2017-8713, CVE-2017-8714, CVE-2017-8719, CVE-2017-8720, CVE-2017-8728, CVE-2017-8733, CVE-2017-8737, CVE-2017-8741, CVE-2017-8747, CVE-2017-8749, CVE-2017-8759

MSFT: MS17-4038786, MS17-4038799

MSKB: 4038786, 4038799