Ubuntu 18.04 LTS : Linux kernel vulnerabilities (USN-3752-1)

high Nessus Plugin ID 112109

Synopsis

The remote Ubuntu host is missing one or more security updates.

Description

The remote Ubuntu 18.04 LTS host has a package installed that is affected by multiple vulnerabilities as referenced in the USN-3752-1 advisory.

It was discovered that, when attempting to handle an out-of-memory situation, a null pointer dereference could be triggered in the Linux kernel in some circumstances. A local attacker could use this to cause a denial of service (system crash). (CVE-2018-1000200)

Wen Xu discovered that the XFS filesystem implementation in the Linux kernel did not properly validate meta-data information. An attacker could use this to construct a malicious xfs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-10323)

Wen Xu discovered that the XFS filesystem implementation in the Linux kernel did not properly validate xattr information. An attacker could use this to construct a malicious xfs image that, when mounted, could cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-10840)

Wen Xu discovered that the ext4 filesystem implementation in the Linux kernel did not properly keep meta- data information consistent in some situations. An attacker could use this to construct a malicious ext4 image that, when mounted, could cause a denial of service (system crash). (CVE-2018-10881)

Wen Xu discovered that the ext4 filesystem implementation in the Linux kernel did not properly handle corrupted meta data in some situations. An attacker could use this to specially craft an ext4 filesystem that caused a denial of service (system crash) when mounted. (CVE-2018-1093)

Jann Horn discovered that the Linux kernel's implementation of random seed data reported that it was in a ready state before it had gathered sufficient entropy. An attacker could use this to expose sensitive information. (CVE-2018-1108)

It was discovered that the procfs filesystem did not properly handle processes mapping some memory elements onto files. A local attacker could use this to block utilities that examine the procfs filesystem to report operating system state, such as ps(1). (CVE-2018-1120)

Jann Horn discovered that the ext4 filesystem implementation in the Linux kernel did not properly keep xattr information consistent in some situations. An attacker could use this to construct a malicious ext4 image that, when mounted, could cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-11412)

Piotr Gabriel Kosinski and Daniel Shapira discovered a stack-based buffer overflow in the CDROM driver implementation of the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-11506)

Shankara Pailoor discovered that a race condition existed in the socket handling code in the Linux kernel.
A local attacker could use this to cause a denial of service (system crash). (CVE-2018-12232)

Shankara Pailoor discovered that the JFS filesystem implementation in the Linux kernel contained a buffer overflow when handling extended attributes. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-12233)

Felix Wilhelm discovered that the KVM implementation in the Linux kernel did not properly perform permission checks in some situations when nested virtualization is used. An attacker in a guest VM could possibly use this to escape into an outer VM or the host OS. (CVE-2018-12904)

Wen Xu discovered that the XFS filesystem implementation in the Linux kernel did not properly handle an error condition with a corrupted xfs image. An attacker could use this to construct a malicious xfs image that, when mounted, could cause a denial of service (system crash). (CVE-2018-13094)

It was discovered that the Linux kernel did not properly handle setgid file creation when performed by a non-member of the group. A local attacker could use this to gain elevated privileges. (CVE-2018-13405)

Silvio Cesare discovered that the generic VESA frame buffer driver in the Linux kernel contained an integer overflow. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-13406)

Jakub Jirasek discovered that multiple use-after-free errors existed in the USB/IP implementation in the Linux kernel. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-5814)

It was discovered that a race condition existed in the ARM Advanced Microcontroller Bus Architecture (AMBA) driver in the Linux kernel that could result in a double free. A local attacker could use this to cause a denial of service (system crash) or possibly execute arbitrary code. (CVE-2018-9415)

It was discovered that an information leak existed in the generic SCSI driver in the Linux kernel. A local attacker could use this to expose sensitive information (kernel memory). (CVE-2018-1000204)

Tenable has extracted the preceding description block directly from the Ubuntu security advisory.

Note that Nessus has not tested for these issues but has instead relied only on the application's self-reported version number.

Solution

Update the affected kernel package.

See Also

https://ubuntu.com/security/notices/USN-3752-1

Plugin Details

Severity: High

ID: 112109

File Name: ubuntu_USN-3752-1.nasl

Version: 1.13

Type: local

Agent: unix

Published: 8/24/2018

Updated: 8/27/2024

Supported Sensors: Frictionless Assessment AWS, Frictionless Assessment Azure, Frictionless Assessment Agent, Nessus Agent, Agentless Assessment, Nessus

Risk Information

VPR

Risk Factor: High

Score: 7.4

CVSS v2

Risk Factor: High

Base Score: 7.2

Temporal Score: 5.6

Vector: CVSS2#AV:L/AC:L/Au:N/C:C/I:C/A:C

CVSS Score Source: CVE-2018-13406

CVSS v3

Risk Factor: High

Base Score: 7.8

Temporal Score: 7

Vector: CVSS:3.0/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

Temporal Vector: CVSS:3.0/E:P/RL:O/RC:C

CVSS Score Source: CVE-2018-9415

Vulnerability Information

CPE: cpe:/o:canonical:ubuntu_linux:18.04:-:lts, p-cpe:/a:canonical:ubuntu_linux:linux-image-4.15.0-33-generic, p-cpe:/a:canonical:ubuntu_linux:linux-image-4.15.0-1018-gcp, p-cpe:/a:canonical:ubuntu_linux:linux-image-4.15.0-33-lowlatency, p-cpe:/a:canonical:ubuntu_linux:linux-image-4.15.0-1020-kvm, p-cpe:/a:canonical:ubuntu_linux:linux-image-4.15.0-33-generic-lpae, p-cpe:/a:canonical:ubuntu_linux:linux-image-4.15.0-1020-aws, p-cpe:/a:canonical:ubuntu_linux:linux-image-4.15.0-1021-raspi2, p-cpe:/a:canonical:ubuntu_linux:linux-image-4.15.0-33-snapdragon

Required KB Items: Host/cpu, Host/Debian/dpkg-l, Host/Ubuntu, Host/Ubuntu/release

Exploit Available: true

Exploit Ease: Exploits are available

Patch Publication Date: 8/24/2018

Vulnerability Publication Date: 4/2/2018

Reference Information

CVE: CVE-2018-1000200, CVE-2018-1000204, CVE-2018-10323, CVE-2018-10840, CVE-2018-10881, CVE-2018-1093, CVE-2018-1108, CVE-2018-1120, CVE-2018-11412, CVE-2018-11506, CVE-2018-12232, CVE-2018-12233, CVE-2018-12904, CVE-2018-13094, CVE-2018-13405, CVE-2018-13406, CVE-2018-5814, CVE-2018-9415

USN: 3752-1