CentOS 9 : openssl-3.2.2-1.el9

high Nessus Plugin ID 200325

Synopsis

The remote CentOS host is missing one or more security updates for openssl.

Description

The remote CentOS Linux 9 host has packages installed that are affected by multiple vulnerabilities as referenced in the openssl-3.2.2-1.el9 build changelog.

- Issue summary: Some non-default TLS server configurations can cause unbounded memory growth when processing TLSv1.3 sessions Impact summary: An attacker may exploit certain server configurations to trigger unbounded memory growth that would lead to a Denial of Service This problem can occur in TLSv1.3 if the non-default SSL_OP_NO_TICKET option is being used (but not if early_data support is also configured and the default anti-replay protection is in use). In this case, under certain conditions, the session cache can get into an incorrect state and it will fail to flush properly as it fills. The session cache will continue to grow in an unbounded manner. A malicious client could deliberately create the scenario for this failure to force a Denial of Service. It may also happen by accident in normal operation. This issue only affects TLS servers supporting TLSv1.3. It does not affect TLS clients. The FIPS modules in 3.2, 3.1 and 3.0 are not affected by this issue. OpenSSL 1.0.2 is also not affected by this issue.
(CVE-2024-2511)

- Issue summary: Checking excessively long DSA keys or parameters may be very slow. Impact summary:
Applications that use the functions EVP_PKEY_param_check() or EVP_PKEY_public_check() to check a DSA public key or DSA parameters may experience long delays. Where the key or parameters that are being checked have been obtained from an untrusted source this may lead to a Denial of Service. The functions EVP_PKEY_param_check() or EVP_PKEY_public_check() perform various checks on DSA parameters. Some of those computations take a long time if the modulus (`p` parameter) is too large. Trying to use a very large modulus is slow and OpenSSL will not allow using public keys with a modulus which is over 10,000 bits in length for signature verification. However the key and parameter check functions do not limit the modulus size when performing the checks. An application that calls EVP_PKEY_param_check() or EVP_PKEY_public_check() and supplies a key or parameters obtained from an untrusted source could be vulnerable to a Denial of Service attack. These functions are not called by OpenSSL itself on untrusted DSA keys so only applications that directly call these functions may be vulnerable. Also vulnerable are the OpenSSL pkey and pkeyparam command line applications when using the `-check` option. The OpenSSL SSL/TLS implementation is not affected by this issue. The OpenSSL 3.0 and 3.1 FIPS providers are affected by this issue. (CVE-2024-4603)

- Issue summary: Calling the OpenSSL API function SSL_free_buffers may cause memory to be accessed that was previously freed in some situations Impact summary: A use after free can have a range of potential consequences such as the corruption of valid data, crashes or execution of arbitrary code. However, only applications that directly call the SSL_free_buffers function are affected by this issue. Applications that do not call this function are not vulnerable. Our investigations indicate that this function is rarely used by applications. The SSL_free_buffers function is used to free the internal OpenSSL buffer used when processing an incoming record from the network. The call is only expected to succeed if the buffer is not currently in use. However, two scenarios have been identified where the buffer is freed even when still in use. The first scenario occurs where a record header has been received from the network and processed by OpenSSL, but the full record body has not yet arrived. In this case calling SSL_free_buffers will succeed even though a record has only been partially processed and the buffer is still in use. The second scenario occurs where a full record containing application data has been received and processed by OpenSSL but the application has only read part of this data. Again a call to SSL_free_buffers will succeed even though the buffer is still in use. While these scenarios could occur accidentally during normal operation a malicious attacker could attempt to engineer a stituation where this occurs. We are not aware of this issue being actively exploited. The FIPS modules in 3.3, 3.2, 3.1 and 3.0 are not affected by this issue. Found by William Ahern (Akamai). Fix developed by Matt Caswell. Fix developed by Watson Ladd (Akamai). Fixed in OpenSSL 3.3.1 (Affected since 3.3.0). (CVE-2024-4741)

Note that Nessus has not tested for these issues but has instead relied only on the application's self-reported version number.

Solution

Update the CentOS 9 Stream openssl package.

See Also

https://kojihub.stream.centos.org/koji/buildinfo?buildID=62270

Plugin Details

Severity: High

ID: 200325

File Name: centos9_openssl-3_2_2-1_62270.nasl

Version: 1.3

Type: local

Agent: unix

Published: 6/11/2024

Updated: 11/14/2024

Supported Sensors: Agentless Assessment, Continuous Assessment, Frictionless Assessment Agent, Frictionless Assessment AWS, Frictionless Assessment Azure, Nessus

Risk Information

VPR

Risk Factor: Medium

Score: 4.4

CVSS v2

Risk Factor: Medium

Base Score: 5.4

Temporal Score: 4

Vector: CVSS2#AV:N/AC:H/Au:N/C:N/I:N/A:C

CVSS Score Source: CVE-2024-2511

CVSS v3

Risk Factor: High

Base Score: 7.5

Temporal Score: 6.5

Vector: CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

Temporal Vector: CVSS:3.0/E:U/RL:O/RC:C

CVSS Score Source: CVE-2024-4741

Vulnerability Information

CPE: p-cpe:/a:centos:centos:openssl-perl, p-cpe:/a:centos:centos:openssl, cpe:/a:centos:centos:9, p-cpe:/a:centos:centos:openssl-libs, p-cpe:/a:centos:centos:openssl-devel

Required KB Items: Host/local_checks_enabled, Host/CentOS/release, Host/CentOS/rpm-list, Host/cpu

Exploit Ease: No known exploits are available

Patch Publication Date: 6/5/2024

Vulnerability Publication Date: 4/8/2024

Reference Information

CVE: CVE-2024-2511, CVE-2024-4603, CVE-2024-4741

IAVA: 2024-A-0208-S, 2024-A-0321-S