SUSE SLES11 Security Update : dnsmasq (SUSE-SU-2021:14603-1)

high Nessus Plugin ID 150612

Language:

Synopsis

The remote SUSE host is missing one or more security updates.

Description

The remote SUSE Linux SLES11 host has a package installed that is affected by multiple vulnerabilities as referenced in the SUSE-SU-2021:14603-1 advisory.

- A vulnerability was found in dnsmasq before version 2.81, where the memory leak allows remote attackers to cause a denial of service (memory consumption) via vectors involving DHCP response creation.
(CVE-2019-14834)

- A flaw was found in dnsmasq before version 2.83. A heap-based buffer overflow was discovered in the way RRSets are sorted before validating with DNSSEC data. An attacker on the network, who can forge DNS replies such as that they are accepted as valid, could use this flaw to cause a buffer overflow with arbitrary data in a heap memory segment, possibly executing code on the machine. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability.
(CVE-2020-25681)

- A flaw was found in dnsmasq before 2.83. A buffer overflow vulnerability was discovered in the way dnsmasq extract names from DNS packets before validating them with DNSSEC data. An attacker on the network, who can create valid DNS replies, could use this flaw to cause an overflow with arbitrary data in a heap- allocated memory, possibly executing code on the machine. The flaw is in the rfc1035.c:extract_name() function, which writes data to the memory pointed by name assuming MAXDNAME*2 bytes are available in the buffer. However, in some code execution paths, it is possible extract_name() gets passed an offset from the base buffer, thus reducing, in practice, the number of available bytes that can be written in the buffer. The highest threat from this vulnerability is to data confidentiality and integrity as well as system availability. (CVE-2020-25682)

- A flaw was found in dnsmasq before version 2.83. A heap-based buffer overflow was discovered in dnsmasq when DNSSEC is enabled and before it validates the received DNS entries. A remote attacker, who can create valid DNS replies, could use this flaw to cause an overflow in a heap-allocated memory. This flaw is caused by the lack of length checks in rfc1035.c:extract_name(), which could be abused to make the code execute memcpy() with a negative size in get_rdata() and cause a crash in dnsmasq, resulting in a denial of service. The highest threat from this vulnerability is to system availability. (CVE-2020-25683)

- A flaw was found in dnsmasq before version 2.83. When getting a reply from a forwarded query, dnsmasq checks in the forward.c:reply_query() if the reply destination address/port is used by the pending forwarded queries. However, it does not use the address/port to retrieve the exact forwarded query, substantially reducing the number of attempts an attacker on the network would have to perform to forge a reply and get it accepted by dnsmasq. This issue contrasts with RFC5452, which specifies a query's attributes that all must be used to match a reply. This flaw allows an attacker to perform a DNS Cache Poisoning attack. If chained with CVE-2020-25685 or CVE-2020-25686, the attack complexity of a successful attack is reduced. The highest threat from this vulnerability is to data integrity. (CVE-2020-25684)

- A flaw was found in dnsmasq before version 2.83. When getting a reply from a forwarded query, dnsmasq checks in forward.c:reply_query(), which is the forwarded query that matches the reply, by only using a weak hash of the query name. Due to the weak hash (CRC32 when dnsmasq is compiled without DNSSEC, SHA-1 when it is) this flaw allows an off-path attacker to find several different domains all having the same hash, substantially reducing the number of attempts they would have to perform to forge a reply and get it accepted by dnsmasq. This is in contrast with RFC5452, which specifies that the query name is one of the attributes of a query that must be used to match a reply. This flaw could be abused to perform a DNS Cache Poisoning attack. If chained with CVE-2020-25684 the attack complexity of a successful attack is reduced.
The highest threat from this vulnerability is to data integrity. (CVE-2020-25685)

- A flaw was found in dnsmasq before version 2.83. When receiving a query, dnsmasq does not check for an existing pending request for the same name and forwards a new request. By default, a maximum of 150 pending queries can be sent to upstream servers, so there can be at most 150 queries for the same name.
This flaw allows an off-path attacker on the network to substantially reduce the number of attempts that it would have to perform to forge a reply and have it accepted by dnsmasq. This issue is mentioned in the Birthday Attacks section of RFC5452. If chained with CVE-2020-25684, the attack complexity of a successful attack is reduced. The highest threat from this vulnerability is to data integrity.
(CVE-2020-25686)

- A flaw was found in dnsmasq before version 2.83. A heap-based buffer overflow was discovered in dnsmasq when DNSSEC is enabled and before it validates the received DNS entries. This flaw allows a remote attacker, who can create valid DNS replies, to cause an overflow in a heap-allocated memory. This flaw is caused by the lack of length checks in rfc1035.c:extract_name(), which could be abused to make the code execute memcpy() with a negative size in sort_rrset() and cause a crash in dnsmasq, resulting in a denial of service. The highest threat from this vulnerability is to system availability. (CVE-2020-25687)

Note that Nessus has not tested for this issue but has instead relied only on the application's self-reported version number.

Solution

Update the affected dnsmasq package.

See Also

https://bugzilla.suse.com/1154849

https://bugzilla.suse.com/1176076

https://bugzilla.suse.com/1177077

http://www.nessus.org/u?bb2f7f83

https://www.suse.com/security/cve/CVE-2019-14834

https://www.suse.com/security/cve/CVE-2020-25681

https://www.suse.com/security/cve/CVE-2020-25682

https://www.suse.com/security/cve/CVE-2020-25683

https://www.suse.com/security/cve/CVE-2020-25684

https://www.suse.com/security/cve/CVE-2020-25685

https://www.suse.com/security/cve/CVE-2020-25686

https://www.suse.com/security/cve/CVE-2020-25687

Plugin Details

Severity: High

ID: 150612

File Name: suse_SU-2021-14603-1.nasl

Version: 1.3

Type: local

Agent: unix

Published: 6/10/2021

Updated: 12/6/2022

Supported Sensors: Frictionless Assessment AWS, Frictionless Assessment Azure, Frictionless Assessment Agent, Nessus Agent, Agentless Assessment, Continuous Assessment, Nessus

Risk Information

VPR

Risk Factor: Medium

Score: 5.9

CVSS v2

Risk Factor: High

Base Score: 8.3

Temporal Score: 6.1

Vector: CVSS2#AV:N/AC:M/Au:N/C:P/I:P/A:C

CVSS Score Source: CVE-2020-25682

CVSS v3

Risk Factor: High

Base Score: 8.1

Temporal Score: 7.1

Vector: CVSS:3.0/AV:N/AC:H/PR:N/UI:N/S:U/C:H/I:H/A:H

Temporal Vector: CVSS:3.0/E:U/RL:O/RC:C

Vulnerability Information

CPE: p-cpe:/a:novell:suse_linux:dnsmasq, cpe:/o:novell:suse_linux:11

Required KB Items: Host/local_checks_enabled, Host/cpu, Host/SuSE/release, Host/SuSE/rpm-list

Exploit Ease: No known exploits are available

Patch Publication Date: 1/19/2021

Vulnerability Publication Date: 1/7/2020

Reference Information

CVE: CVE-2019-14834, CVE-2020-25681, CVE-2020-25682, CVE-2020-25683, CVE-2020-25684, CVE-2020-25685, CVE-2020-25686, CVE-2020-25687

IAVA: 2020-A-0194-S, 2021-A-0041

SuSE: SUSE-SU-2021:14603-1