Description
The remote host is affected by the vulnerability described in GLSA-202212-01 (curl: Multiple Vulnerabilities)
- When curl is instructed to download content using the metalink feature, thecontents is verified against a hash provided in the metalink XML file.The metalink XML file points out to the client how to get the same contentfrom a set of different URLs, potentially hosted by different servers and theclient can then download the file from one or several of them. In a serial orparallel manner.If one of the servers hosting the contents has been breached and the contentsof the specific file on that server is replaced with a modified payload, curlshould detect this when the hash of the file mismatches after a completeddownload.
It should remove the contents and instead try getting the contentsfrom another URL. This is not done, and instead such a hash mismatch is onlymentioned in text and the potentially malicious content is kept in the file ondisk. (CVE-2021-22922)
- When curl is instructed to get content using the metalink feature, and a user name and password are used to download the metalink XML file, those same credentials are then subsequently passed on to each of the servers from which curl will download or try to download the contents from. Often contrary to the user's expectations and intentions and without telling the user it happened. (CVE-2021-22923)
- curl supports the `-t` command line option, known as `CURLOPT_TELNETOPTIONS`in libcurl. This rarely used option is used to send variable=content pairs toTELNET servers.Due to flaw in the option parser for sending `NEW_ENV` variables, libcurlcould be made to pass on uninitialized data from a stack based buffer to theserver. Therefore potentially revealing sensitive internal information to theserver using a clear- text network protocol.This could happen because curl did not call and use sscanf() correctly whenparsing the string provided by the application. (CVE-2021-22925)
- libcurl-using applications can ask for a specific client certificate to be used in a transfer. This is done with the `CURLOPT_SSLCERT` option (`--cert` with the command line tool).When libcurl is built to use the macOS native TLS library Secure Transport, an application can ask for the client certificate by name or with a file name - using the same option. If the name exists as a file, it will be used instead of by name.If the appliction runs with a current working directory that is writable by other users (like `/tmp`), a malicious user can create a file name with the same name as the app wants to use by name, and thereby trick the application to use the file based cert instead of the one referred to by name making libcurl send the wrong client certificate in the TLS connection handshake. (CVE-2021-22926)
- When sending data to an MQTT server, libcurl <= 7.73.0 and 7.78.0 could in some circumstances erroneously keep a pointer to an already freed memory area and both use that again in a subsequent call to send data and also free it *again*. (CVE-2021-22945)
- A user can tell curl >= 7.20.0 and <= 7.78.0 to require a successful upgrade to TLS when speaking to an IMAP, POP3 or FTP server (`--ssl-reqd` on the command line or`CURLOPT_USE_SSL` set to `CURLUSESSL_CONTROL` or `CURLUSESSL_ALL` withlibcurl). This requirement could be bypassed if the server would return a properly crafted but perfectly legitimate response.This flaw would then make curl silently continue its operations
**withoutTLS** contrary to the instructions and expectations, exposing possibly sensitive data in clear text over the network. (CVE-2021-22946)
- When curl >= 7.20.0 and <= 7.78.0 connects to an IMAP or POP3 server to retrieve data using STARTTLS to upgrade to TLS security, the server can respond and send back multiple responses at once that curl caches.
curl would then upgrade to TLS but not flush the in-queue of cached responses but instead continue using and trustingthe responses it got *before* the TLS handshake as if they were authenticated.Using this flaw, it allows a Man-In-The-Middle attacker to first inject the fake responses, then pass-through the TLS traffic from the legitimate server and trick curl into sending data back to the user thinking the attacker's injected data comes from the TLS-protected server. (CVE-2021-22947)
- An improper authentication vulnerability exists in curl 7.33.0 to and including 7.82.0 which might allow reuse OAUTH2-authenticated connections without properly making sure that the connection was authenticated with the same credentials as set for this transfer. This affects SASL-enabled protocols: SMPTP(S), IMAP(S), POP3(S) and LDAP(S) (openldap only). (CVE-2022-22576)
- An insufficiently protected credentials vulnerability exists in curl 4.9 to and include curl 7.82.0 are affected that could allow an attacker to extract credentials when follows HTTP(S) redirects is used with authentication could leak credentials to other services that exist on different protocols or port numbers.
(CVE-2022-27774)
- An information disclosure vulnerability exists in curl 7.65.0 to 7.82.0 are vulnerable that by using an IPv6 address that was in the connection pool but with a different zone id it could reuse a connection instead. (CVE-2022-27775)
- A insufficiently protected credentials vulnerability in fixed in curl 7.83.0 might leak authentication or cookie header data on HTTP redirects to the same host but another port number. (CVE-2022-27776)
- libcurl wrongly allows cookies to be set for Top Level Domains (TLDs) if thehost name is provided with a trailing dot.curl can be told to receive and send cookies. curl's cookie engine can bebuilt with or without [Public Suffix List](https://publicsuffix.org/)awareness. If PSL support not provided, a more rudimentary check exists to atleast prevent cookies from being set on TLDs. This check was broken if thehost name in the URL uses a trailing dot.This can allow arbitrary sites to set cookies that then would get sent to adifferent and unrelated site or domain. (CVE-2022-27779)
- The curl URL parser wrongly accepts percent-encoded URL separators like '/'when decoding the host name part of a URL, making it a *different* URL usingthe wrong host name when it is later retrieved.For example, a URL like `http://example.com%2F127.0.0.1/`, would be allowed bythe parser and get transposed into `http://example.com/127.0.0.1/`. This flawcan be used to circumvent filters, checks and more.
(CVE-2022-27780)
- libcurl provides the `CURLOPT_CERTINFO` option to allow applications torequest details to be returned about a server's certificate chain.Due to an erroneous function, a malicious server could make libcurl built withNSS get stuck in a never-ending busy-loop when trying to retrieve thatinformation.
(CVE-2022-27781)
- libcurl would reuse a previously created connection even when a TLS or SSHrelated option had been changed that should have prohibited reuse.libcurl keeps previously used connections in a connection pool for subsequenttransfers to reuse if one of them matches the setup. However, several TLS andSSH settings were left out from the configuration match checks, making themmatch too easily. (CVE-2022-27782)
- Using its HSTS support, curl can be instructed to use HTTPS directly insteadof using an insecure clear- text HTTP step even when HTTP is provided in theURL. This mechanism could be bypassed if the host name in the given URL used atrailing dot while not using one when it built the HSTS cache. Or the otherway around
- by having the trailing dot in the HSTS cache and *not* using thetrailing dot in the URL.
(CVE-2022-30115)
- A malicious server can serve excessive amounts of `Set-Cookie:` headers in a HTTP response to curl and curl < 7.84.0 stores all of them. A sufficiently large amount of (big) cookies make subsequent HTTP requests to this, or other servers to which the cookies match, create requests that become larger than the threshold that curl uses internally to avoid sending crazy large requests (1048576 bytes) and instead returns an error.This denial state might remain for as long as the same cookies are kept, match and haven't expired. Due to cookie matching rules, a server on `foo.example.com` can set cookies that also would match for `bar.example.com`, making it it possible for a sister server to effectively cause a denial of service for a sibling site on the same second level domain using this method. (CVE-2022-32205)
- curl < 7.84.0 supports chained HTTP compression algorithms, meaning that a serverresponse can be compressed multiple times and potentially with different algorithms. The number of acceptable links in this decompression chain was unbounded, allowing a malicious server to insert a virtually unlimited number of compression steps.The use of such a decompression chain could result in a malloc bomb, makingcurl end up spending enormous amounts of allocated heap memory, or trying toand returning out of memory errors. (CVE-2022-32206)
- When curl < 7.84.0 saves cookies, alt-svc and hsts data to local files, it makes the operation atomic by finalizing the operation with a rename from a temporary name to the final target file name.In that rename operation, it might accidentally *widen* the permissions for the target file, leaving the updated file accessible to more users than intended. (CVE-2022-32207)
- When curl < 7.84.0 does FTP transfers secured by krb5, it handles message verification failures wrongly.
This flaw makes it possible for a Man-In-The-Middle attack to go unnoticed and even allows it to inject data to the client. (CVE-2022-32208)
- When doing HTTP(S) transfers, libcurl might erroneously use the read callback (`CURLOPT_READFUNCTION`) to ask for data to send, even when the `CURLOPT_POSTFIELDS` option has been set, if the same handle previously was used to issue a `PUT` request which used that callback. This flaw may surprise the application and cause it to misbehave and either send off the wrong data or use memory after free or similar in the subsequent `POST` request. The problem exists in the logic for a reused handle when it is changed from a PUT to a POST. (CVE-2022-32221)
- When curl is used to retrieve and parse cookies from a HTTP(S) server, itaccepts cookies using control codes that when later are sent back to a HTTPserver might make the server return 400 responses.
Effectively allowing asister site to deny service to all siblings. (CVE-2022-35252)
- curl can be told to parse a `.netrc` file for credentials. If that file endsin a line with 4095 consecutive non-white space letters and no newline, curlwould first read past the end of the stack-based buffer, and if the readworks, write a zero byte beyond its boundary.This will in most cases cause a segfault or similar, but circumstances might also cause different outcomes.If a malicious user can provide a custom netrc file to an application or otherwise affect its contents, this flaw could be used as denial- of-service. (CVE-2022-35260)
- curl before 7.86.0 has a double free. If curl is told to use an HTTP proxy for a transfer with a non- HTTP(S) URL, it sets up the connection to the remote server by issuing a CONNECT request to the proxy, and then tunnels the rest of the protocol through. An HTTP proxy might refuse this request (HTTP proxies often only allow outgoing connections to specific port numbers, like 443 for HTTPS) and instead return a non-200 status code to the client. Due to flaws in the error/cleanup handling, this could trigger a double free in curl if one of the following schemes were used in the URL for the transfer: dict, gopher, gophers, ldap, ldaps, rtmp, rtmps, or telnet. The earliest affected version is 7.77.0. (CVE-2022-42915)
- In curl before 7.86.0, the HSTS check could be bypassed to trick it into staying with HTTP. Using its HSTS support, curl can be instructed to use HTTPS directly (instead of using an insecure cleartext HTTP step) even when HTTP is provided in the URL. This mechanism could be bypassed if the host name in the given URL uses IDN characters that get replaced with ASCII counterparts as part of the IDN conversion, e.g., using the character UTF-8 U+3002 (IDEOGRAPHIC FULL STOP) instead of the common ASCII full stop of U+002E (.).
The earliest affected version is 7.77.0 2021-05-26. (CVE-2022-42916)
Note that Nessus has not tested for these issues but has instead relied only on the application's self-reported version number.
Solution
All curl users should upgrade to the latest version:
# emerge --sync # emerge --ask --oneshot --verbose >=net-misc/curl-7.86.0
Plugin Details
File Name: gentoo_GLSA-202212-01.nasl
Supported Sensors: Nessus
Risk Information
Vector: CVSS2#AV:N/AC:L/Au:N/C:P/I:P/A:P
Vector: CVSS:3.0/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:H
Temporal Vector: CVSS:3.0/E:F/RL:O/RC:C
Vulnerability Information
CPE: cpe:/o:gentoo:linux, p-cpe:/a:gentoo:linux:curl
Required KB Items: Host/local_checks_enabled, Host/Gentoo/release, Host/Gentoo/qpkg-list
Exploit Ease: Exploits are available
Patch Publication Date: 12/19/2022
Vulnerability Publication Date: 7/24/2021
Reference Information
CVE: CVE-2021-22922, CVE-2021-22923, CVE-2021-22925, CVE-2021-22926, CVE-2021-22945, CVE-2021-22946, CVE-2021-22947, CVE-2022-22576, CVE-2022-27774, CVE-2022-27775, CVE-2022-27776, CVE-2022-27779, CVE-2022-27780, CVE-2022-27781, CVE-2022-27782, CVE-2022-30115, CVE-2022-32205, CVE-2022-32206, CVE-2022-32207, CVE-2022-32208, CVE-2022-32221, CVE-2022-35252, CVE-2022-35260, CVE-2022-42915, CVE-2022-42916